Wanana a Gartner o nā ʻenehana he 10 kiʻekiʻe no 2011

Depositphotos 43250467 s

Hoihoi ka heluhelu ʻana Ka wanana a Gartner o nā ʻenehana he 10 kiʻekiʻe no 2011… A pehea ka hopena o kēlā me kēia wānana e pili ana i ka hokona ʻana o ka mīkini paʻalima. ʻOiai nā holomua o ka mālama ʻana a me nā lakohana e hoʻopili ana i nā hiki o nā ʻoihana e launa a kaʻana like i ka ʻike me nā mea kūʻai aku a me nā prospect e ʻoi aku ka wikiwiki a me ka maikaʻi.

Nā ʻenehana kiʻekiʻe he ʻumi no 2011

  1. Kapua Me - Aia nā lawelawe ʻoihana ao ma kahi o nā spectrum mai ka lehulehu ākea i kahi pilikino paʻa. ʻO nā makahiki ʻekolu e hiki mai ana e ʻike i ka lawe ʻana o kahi pae o ka lawelawe ʻana i ka ao e hāʻule i waena o kēia mau mea ʻelua. E hāʻawi aku nā mea kūʻai aku i nā hoʻopili ʻōnaehana pilikino pilikino e hāʻawi i nā ʻenehana lawelawe ao lehulehu o ka mea kūʻai aku (lako polokalamu a me / a me nā lakohana) a me nā ʻano hana (ʻo ia hoʻi, nā hana maikaʻi loa e kūkulu a holo i ka lawelawe) i kahi ʻano i hiki ke hoʻokō ʻia i loko o ka ʻoihana o ka mea kūʻai. Hāʻawi kekahi he nui i nā lawelawe hoʻokele e hoʻokele mamao i ka hoʻokō lawelawe ʻana o ke ao. Manaʻo ʻo Gartner i nā ʻoihana nui e loaʻa kahi kime sourcing hōʻeuʻeu e ka 2012 i kuleana no ka hoʻomau ʻana i nā hoʻoholo cloudourcing a me ka hoʻokele.
  2. Nā polokalamu kelepona a me nā papahō Media - Kuhi ʻo Gartner ma ka hopena o 2010, 1.2 biliona mau kānaka e halihali i nā paʻa lima lima hiki ke waiwai, kālepa kelepaʻi e hāʻawi ana i kahi kūpono kūpono no ka hui ʻana o ka neʻe a me ka Pūnaewele. Ke lilo nei nā mīkini paʻalima i mau kamepiula i kā lākou pono ponoʻī, me ka nui kupaianaha o ka hiki ke hana a me ka bandwidth. Aia he mau haneli haneli o nā noi no nā paepae e like me ka Apple iPhone, ʻoiai ke kaupalena ʻia o ka mākeke (no ka paepae hoʻokahi wale nō) a pono no ka coding kū hoʻokahi.

    ʻO ka maikaʻi o ka ʻike o nā noi ma kēia mau hāmeʻa, hiki ke hoʻopili i ka wahi, ka neʻe a me nā ʻano ʻē aʻe i kā lākou hana, ke alakaʻi nei i nā mea kūʻai aku e launa pū me nā ʻoihana i makemake nui ʻia ma o nā polokalamu kelepona. Ua alakaʻi kēia i ka heihei e pahu aku i nā noi ma ke ʻano he hoʻokūkū hoʻokūkū e hoʻomaikaʻi ai i nā pilina a loaʻa ka lanakila ma luna o nā mea hoʻokūkū nona nā ʻaoʻao pono pūnaewele wale nō.

  3. Nā kamaʻilio kaiāulu a me ka laulima ʻana - Hiki ke hoʻokaʻawale ʻia ka pāpili kaiaulu i: (1) Pūnaewele kaiaulu — nā huahana hoʻokele ʻike pilikino, e like me MySpace, Facebook, LinkedIn a me Friendster a me nā ʻenehana loiloi kaiapili (SNA) ʻenehana e hoʻohana i nā algorithms e hoʻomaopopo a hoʻohana i nā pilina kanaka no ka ʻike. o ka poʻe a me ke akamai. (2) Ke alu like kaiāulu - nā ʻenehana, e like me wiki, blog, leka uila, ke keʻena hana, a me ka lehulehu. (3) Hoʻopuka kaiaulu - nā ʻenehana e kōkua i nā kaiāulu i ka hōʻuluʻulu ʻana i nā ʻike pākahi i kahi waihona ʻike hiki ke hoʻohana ʻia a me ke kaiāulu e like me Youtube a me flickr. (4) Nā manaʻo kaiāulu - ka loaʻa ʻana o ka manaʻo a me ka manaʻo mai ke kaiāulu e pili ana i nā mea kikoʻī e like me ka Youtube, flickr, Digg, Del.icio.us, a me Amazon. Wanana ʻo Gartner e ka 2016, e hoʻopili ʻia nā ʻenehana kaiaulu me ka hapa nui o nā noi ʻoihana. Pono nā hui e hui pū i kā lākou CRM kaiaulu, nā kamaʻilio kūloko a me ka laulima ʻana, a me nā papahana pūnaewele kaiaulu i kahi papahana i hoʻonohonoho ʻia
  4. Video -ʻAʻole he ʻano media hou ka wikiō, akā ʻo ka hoʻohana ʻia ʻana ma ke ʻano he ʻano media maʻamau i hoʻohana ʻia i nā ʻoihana pāpaho ʻole e hoʻonui wikiwiki nei. ʻO nā ʻenehana i nā kiʻi paʻi kiʻi, nā uila uila o nā mea kūʻai mai, ka pūnaewele, lako polokalamu kaiaulu, nā kamaʻilio hoʻohui ʻia, ke kīwī a me ka pūnaewele pūnaewele a me ka pūnaewele pūnaewele e hōʻea i nā kiko kikoʻī e lawe i ke wikiō i ka mainstream. I loko o nā makahiki ʻekolu e hiki mai ana, manaʻo ʻo Gartner e lilo ka wikiō i ʻano maʻa mau a me ke ʻano hoʻohālikelike no ka hapa nui o nā mea hoʻohana, a e 2013, ʻoi aku ma mua o 25 pākēneka o ka ʻike a nā limahana i ka lā e noho aliʻi ʻia e nā kiʻi, wikiō a leo paha.
  5. ʻO Analytics ʻAno Hana Hou - Hoʻonui i ka hiki i ka hoʻomākaukau ʻana o nā kamepiula me nā lako paʻalima me ka hoʻomaikaʻi ʻana i ka pilina e hiki ai i kahi neʻe i ke ʻano e kākoʻo ai nā ʻoihana i nā hoʻoholo hana. Ke hiki nei ke holo i nā simulate a i ʻole nā ​​hiʻohiʻona e wānana i ka hopena e hiki mai ana, ma mua o ka hāʻawi maʻalahi ʻana i nā ʻikepili e nānā i hope e pili ana i nā hana i hala, a e hana i kēia mau wanana i ka manawa maoli e kākoʻo i kēlā me kēia hana ʻoihana. ʻOiai koi paha kēia i nā loli nui i ka hana o ka hana a me ka ʻike ʻoihana ʻoihana, aia ka mea hiki ke wehe i nā hoʻomaikaʻi nui i nā hopena ʻoihana a me nā helu kūleʻa ʻē aʻe.
  6. Nānā Kaiāulu - Pilikanaka analytics wehewehe i ke kaʻina hana o ke ana ʻana, kālailai ʻana a me ka wehewehe ʻana i nā hopena o ka launa ʻana a me nā hui ma waena o ka poʻe, nā kumuhana a me nā manaʻo. Hiki ke hana i kēia mau pilina ma nā polokalamu polokalamu kaiaulu i hoʻohana ʻia ma ka wahi hana, i loko a i ʻole kūwaho e kū ana i nā kaiāulu a i ʻole ma ka pūnaewele kaiapuni. Pilikanaka analytics He manawa umbrella ia e hoʻopili ana i nā ʻano hana loiloi loea e like me ka kānana ʻana o ka pilikanaka, ka hoʻopili ʻana i ka nohona pūnaewele, ka noʻonoʻo sentiment a me ka pāpaho-pāpaho. analytics. He mea pono nā pono hana loiloi pūnaewele no ka nānā ʻana i ka hanana kaiāulu a me nā mea pili like a me nā ʻano hana o kēlā me kēia, nā hui a i ʻole nā ​​hui. Hoʻopili ka hoʻopili pūnaewele i ka hōʻiliʻili ʻana i nā ʻikepili mai nā kumuwaiwai he nui, ʻike ʻana i nā pilina, a me ka loiloi ʻana i ka hopena, ka maikaʻi a me ka maikaʻi o ka pilina.
  7. Pūnaewele Context-Aware - Nā kikowaena pūnaewele ʻike-ʻike pili i ka manaʻo o ka hoʻohana ʻana i ka ʻike e pili ana i ka hopena o ka mea hoʻohana a mea paha o ka mea, nā pilina a me nā makemake e hoʻomaikaʻi i ka maikaʻi o ka launa pū ʻana me kēlā mea hoʻohana hope. ʻO ka mea hoʻohana hope he mea kūʻai aku, hoa hana a limahana paha. Kuhi kahi ʻōnaehana ʻike pilina i nā pono o ka mea hoʻohana a lawelawe lawelawe i nā ʻike kūpono, hana a lawelawe paha. Wanana ʻo Gartner a hiki i ka makahiki 2013, ʻoi aku ka hapalua o nā ʻoihana Fortune 500 e loaʻa nā papahana hoʻolālā e pili ana i ka pōʻaiapili a ma ka makahiki 2016, ʻo ka hapakolu o ke kūʻai aku ʻana o nā mea kūʻai aku ma ka honua holoʻokoʻa e hoʻokumu ʻia i ka ʻike pilina
  8. Hoʻomanaʻo Papa Papa - ʻIke ʻo Gartner i ka hoʻohana nui ʻana o ka hoʻomanaʻo flash i nā ʻōnaehana mea kūʻai, nā pono leʻaleʻa a me nā ʻōnaehana IT paʻa ʻē aʻe. Hāʻawi pū kekahi i kahi papa hou o ka hierarchy mālama i nā kikowaena a me nā kamepiula mea kūʻai aku i loaʻa nā pōmaikaʻi nui - ka hakahaka, ka wela, ka hana a me ka rugness i waena o lākou. ʻAʻole like me RAM, ka hoʻomanaʻo nui i nā kikowaena a me nā PC, hoʻomau ka hoʻomanaʻo hoʻomanaʻo i ka wā e hemo ai ka mana. I kēlā ala, ʻano like ia me nā drive disk kahi e waiho ai ka ʻike a pono e ola i nā iho uila a me nā hana hou. Hāʻawi ʻia i ke kumu kūʻai kumu kūʻai, kūkulu maʻalahi ʻana i nā kope pā paʻalāʻau paʻa mai ka flash e hoʻopaʻa i kēlā wahi kūpono ma nā ʻikepili āpau i kahi faila a i ʻole ka leo holoʻokoʻa, ʻoiai kahi papa ʻōlelo hou i hōʻike ʻia, ʻaʻole kahi ʻāpana o ka ʻōnaehana faila, ʻae i ka hoʻonohonoho pahuhopu wale nō. nā mea leverage kiʻekiʻe o ka ʻike e pono ai e ʻike i ka hoʻohuihui o ka hana a me ka hoʻomau ʻana i loaʻa me ka hoʻomanaʻo flash.
  9. Pūnaewele Ubiquitous - Ka hana a Mark Weiser a me nā mea noiʻi ʻē aʻe ma Xerox's PARC pena kiʻi i ke kiʻi o ka nalu ʻekolu o ka helu ʻana e hiki mai ana i ʻike ʻole ʻia nā kamepiula i ka honua. E like me ka hoʻonui ʻana o nā kamepiula a i ka hāʻawi ʻia ʻana o nā mea o kēlā me kēia lā ka hiki ke kamaʻilio me nā tag RFID a me kā lākou mau hope, e hoʻokokoke nā pūnaewele a ʻoi aku i ka pālākiō i hiki ke mālama ʻia ma nā ala waena kuʻuna. Ke alakaʻi nei kēia i ke ʻano nui o ka hoʻopili ʻana i nā ʻōnaehana kamepiula i ka ʻenehana hana, i hana ʻia e like me ka ʻenehana hōʻoluʻolu a i hoʻokele maoli ʻia a hoʻopili ʻia me IT. Hoʻohui ʻia, hāʻawi ia iā mākou i ke alakaʻi nui i ka mea e manaʻo ai me ka hoʻonui ʻana i nā hāmeʻa pilikino, ka hopena o ka consumerization i nā hoʻoholo IT, a me nā pono kūpono e hoʻoneʻe ʻia e ka kaomi o ka hoʻonui wikiwiki i ka helu o nā kamepiula no kēlā me kēia kanaka.
  10. Nā hana a me nā kamepiula i hoʻokumu ʻia me ka lole - ʻO kahi kamepiula e pili ana i ka lole kahi ʻano modular o ka hoʻolālā kahi e hiki ai ke hōʻiliʻili ʻia kahi ʻōnaehana mai nā modula hale-ʻokoʻa i hoʻopili ʻia ma luna o kahi lole a i hoʻohuli ʻia paha i ka backplane. I loko o kāna ʻano kumu, hoʻopili ʻia kahi kamepiula i hoʻokumu ʻia i kahi kaʻina kaʻawale, hoʻomanaʻo, I / ʻO, a me nā modula offload (GPU, NPU, a me nā mea ʻē aʻe) e pili ana i kahi interconnect i kuapo ʻia a, ʻo ka mea nui, pono ka polokalamu e hoʻonohonoho a hoʻokele. ka ʻōnaehana hopena (s). ʻO nā ʻōnaehana i hoʻokumu ʻia i ka lole (FBI) e hoʻohālikelike i nā kumuwaiwai kino - nā ʻenekini cores, bandwidth bandwidth a me nā loulou a me ka mālama ʻana - i loko o nā loko wai e mālama ʻia e ka Fabric Resource Pool Manager (FRPM), ka hana lako polokalamu. ʻO ka FRPM kahi e hoʻohuli ʻia e ka Real Time Infrastructure (RTI) polokalamu Kiaʻāina ʻoihana. Hiki ke hoʻolako ʻia kahi FBI e kahi mea kūʻai aku hoʻokahi a i ʻole kahi hui o nā mea kūʻai aku e hana pū ana, a i ʻole kahi mea hoʻopili - kūloko a i waho paha.

Pehea kou manaʻo?

Ke hoʻohana nei kēia pūnaewele i ka Akismet e ho'ēmi i ka spam. E aʻo pehea e hanaʻia ai kāuʻikeʻikepili.